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My research is in Harmonic Analysis which is a rich field with applications to a variety of
areas, such as: dispersive PDEs, mathematical physics, number theory, signal processing,
and many more. At the start of my thesis my goal was to prove Lp estimates for Fourier
integral operators with rational symbols of the type presented in section 3. After careful
study of these operators, my curiosity branched out into two specific areas. The first was to
find estimates for generalizations of the multilinear fractional integral operators studied by
Kenig and Stein in [7], Grafakos and Kalton in [3], and also in other works such as [8], [9],
and [4]. The second area of interest was to study decay estimates for multilinear oscillatory
integrals, which is a broad topic initialized by Christ, Li, Tao, and Thiele in [2].

In section 1 I discuss our results for the main multilinear fractional integral operator
that my advisor, Camil Muscalu, and I studied and titled “The Fractional Biest.” In section
2 I discuss results on multilinear oscillatory integrals that grew out of my participation in the
MRC Harmonic Analysis conference. Lastly, in section 3, I discuss specific applications to
the Fourier integral operators with rational symbol that initialized our project. Interest in
the operators in section 3 stemmed from a fruitful discussion with Mihaela Ifrim and Daniel
Tataru on the nonlinear Schrödinger equation during Camil Muscalu’s visit to MSRI in 2018.
Each of the topics discussed have strong potential for ongoing work in which techniques
from partial differential equations, more general time-frequency analysis, and other areas of
analysis may be applicable.

1 The Fractional Biest Operator

A major portion of my thesis work was dedicated to proving Lp1ˆLp2ˆLp3 Ñ Lr estimates
for the fractional Biest operator

Iα,βpf, g, hqpxq :“

ż

R2

fpx´ tqgpx` s` tqhpx´ sqKα,βpt, sq dsdt (1.1)

where Kα,βpt, sq “
1

|t|α¨|s|β
and α, β P p0, 1q. Note that if we replace Kα,βpt, sq with the

kernel Kpt, sq “ 1
t¨s , then the operator in (1.1) becomes the known Biest operator studied

by Camil Muscalu, Terence Tao, and Christoph Thiele in [12] for which the authors prove
Lp1 ˆ Lp2 ˆ Lp3 Ñ Lr bounds in the range 1 ă p1, p2, p3 ď 8 and 2{5 ă r ă 8, for
exponents satisfying

1

p1
`

1

p2
`

1

p3
“

1

r
.
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1.1 Lp Estimates for the Fractional Biest

Our main result regarding the fractional Biest operator (1.1) is as follows:

Theorem 1.1. Assume that 0 ă α, β ă 1, 1 ď p1, p2, p3 ď 8, 0 ă r ă 8, and

1

p1
`

1

p2
`

1

p3
` α` β “

1

r
` 2. (1.2)

Then, we have:

i) If 1 ă pi, i “ 1, 2, 3,

||Iα,βpf, g, hq||LrpRq À ||f ||Lp1 pRq||g||Lp2 pRq||h||Lp3 pRq.

ii) 1 ď pi, i “ 1, 2, 3, and at least one of the pi is one, then instead we obtain the analogous
restricted weak type estimate. That is

||Iα,βpf, g, hq||Lr,8pRq À |E1|
1{p1 |E2|

1{p2 |E3|
1{p3

for |f | ď χE1 , |g| ď χE2 , |h| ď χE3 where Ei are sets of finite measure.

The exponent relation (1.2) is dictated by the scaling properties of Iα,β. In Theorem 1.1 we
obtain the full expected range of strong type Lp estimates, with the exception of uncertainty
at the endpoints, i.e. exactly when pi “ 1 for any i. The Biest operator mentioned above can
be seen as the limiting case of the fractional Biest operator as α, β approach one. Notice
that our range of estimates in the limiting case is consist with the range obtain in [12],
however for the fractional Biest, as α, β approach one, our estimates hold arbitrarily close
to the end point r “ 1{3 whereas this sharp range is not known yet for the Biest operator.

Our methods of proving Theorem 1.1 consist of proving restricted weak type estimates
in the full range including the end point p1 “ p2 “ p3 “ 1. We then convert these restricted
weak type estimates into the strong type estimates stated in (i) of Theorem 1.1 by applying
the multilinear interpolation theorems used in [12].

In order to obtain restricted weak type estimates, we use a duality lemma similar to
that of Ch. 2 in [13]. However, in our case we dualize through L1{3 which allows us to reach
the borderline estimate uniformly in α, β, this is a technique that was used by Cristina
Benea and Camil Muscalu in [1]. After the careful dualization and discretization process,
for |f | ď χE1 , |g| ď χE2 , |h| ď χE3 , and |F | ď χE , we obtain the model:
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||Iα,βpf,g, hq ¨ F ||
1{3

L1{3 À

ÿ

J dyadic

|J |
2´β
3

¨

˚

˝

ÿ

IĎJ
I dyadic

|I|
3´α
2 avgIpfq

1{2
ĄavgI,Jpg, hq

1{2avgIpF q
1{2

˛

‹

‚

2

avgJpF q
1{3.

(1.3)

We can assume with out loss of generality that all functions are non-negative since Iα,β is
a positive operator. For a given function H, avgIpHq – 1

|I|

ş

I Hpxq dx, and

ĄavgI,Jpg, hq :“

ż

RpI,|J |q
gps̃qhpt̃q ds̃dt̃

where, as shown in Figure 1, RpI, |J |q is a rectangle index by pI, |J |q. The rectangle RpI, |J |q
was obtained from a careful change of variables and a translation that depends precisely on
interval I. This change of variables was a natural choice as it allowed us to separate f as
an average on the small scales only, while the newly defined average encoded information
of both I and J , and hence allowed us to carefully tackle the presence of two scales in the
decomposition.

Figure 1: The left side shows the rectangles originally faced and the right side shows rectangles
obtained after a change of variables and translation.

An important fact that we prove about ĄavgI,Jpg, hq is that it satisfies the main properties
needed to run a successful stopping time argument. That is, it satisfies simplified versions
of the intricate “size” and “energy” type estimates described in Ch. 6 of [13].

While our work is the first to our knowledge to study the fractional Biest operator,
a similar fractional analogue of the bilinear Hilbert transform (BHT) was studied by Kenig
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and Stein in [7] and independently by Grafakos and Kalton in [3]. Namely, they showed
that

Iαpf, gqpxq :“

ż

R

fpx´ tqgpx` tq

|t|α
dt (1.4)

satisfies estimates

||Iαpf, gq||Lr À ||f ||Lp1 ||g||Lp2

for 1
p1
` 1

p2
` α “ 1

r ` 1, 1 ă p1, p2 ď 8, r ą 0, and if either p1, p2 are one, then they
showed that the same estimate holds by replacing Lr with Lr,8. Similar to our previous
observation, in the limit as α approaches one estimates for Iα approach those satisfied by
the BHT, but for the fractional BHT the borderline estimates below r “ 2{3 are reached
whereas estimates for 1{2 ă r ă 2{3 are not known for the BHT. More information on the
BHT operator itself, can be found but is not limited to the work in [5], [10], [15], [16], and
[17].

The method of proof used in [7] and [3] takes advantage of the scaling of Iα and
the most natural extension of their argument does not apply to operators such as (1.1)
whose discretized model is comprised of mixed scale averages. Using our method, we are
not only able to prove estimates for the fractional Biest, but we also recover the strong
Lp type estimates in [7] and [4], and in ongoing work we plan to generalize our method to
more advanced multilinear fractional operators, such as multiple multilinear iterations of
the aforementioned ones.

2 Oscillatory Integral Operators

In June 2018, I was a participant of the MRC Harmonic Analysis conference on new de-
velopments on oscillatory integrals. Through this conference I met my collaborators Zhen
Zeng and Kevin O’Neill, and we were granted the MRC collaboration Research Travel Grant
which allowed us to meet at the University of Pennsylvania to work on a project proposed
by Philip Gressman.

Our project was motivated by the work of Christ, Li, Tao, and Thiele in [2] in which
they initialize the systematic study of general multilinear oscillatory integrals. Namely,
those of the form

T pf1, ..., fnq “

ż

Rm
eiλSpxq

n
ź

j“1

fjpπjpxqqφpxq dx, (2.1)

where λ P R is a parameter, S : Rm Ñ R is a real-valued measurable function, φ P

C0pRmq is a cutoff function containing the origin in its support, and the πj are orthogonal
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projections onto proper subspaces Vj of Rm of common dimension satisfying some additional
properties that we will forgo mentioning here. Our goal was to determine decay rates of
these oscillatory integral operators.

2.1 Decay of Multi-linear Oscillatory Integral Operators in R2

This project led to the publication of [14] in which we prove Theorem 2.1 below. The
details of the hypothesis are included for completion, but we will not go into details of their
meaning in this exposition.

Theorem 2.1. Let n ě 4 and let aj “ pbj , cjq P R2zt0u (1 ď j ď n) lie in general position
and define Dn “

śn
j“1pcjBx ´ bjByq. Then, there exists C ą 0, depending only on φ and

the aj, such that if |DnSpx, yq| ě 1 for all px, yq in the convex hull of the support of φ,
ˇ

ˇ

ˇ

ˇ

ˇ

ż

R2

eiλSpx,yq
n
ź

j“1

fjpaj ¨ px, yqqφpx, yqdxdy

ˇ

ˇ

ˇ

ˇ

ˇ

ď C|λ|´2
1´n

n
ź

j“1

||fj ||pj (2.2)

for

p “

ˆ

2, 2,
2n´1

2n´2 ´ 1
, ...,

2n´1

7
,
2n´1

3
` ε, 2n´1 ´

9 ¨ 2n´3ε

2n´3 ` 3ε

˙

(2.3)

and 0 ă ε ă 1.

The theorem above is a generalization of a result of Gressman and Xiao in [6] where they
proved that

ˇ

ˇ

ˇ

ˇ

ĳ

eiλSpx,yqfpxqgpyqhpx` yqφpx, yqdxdy

ˇ

ˇ

ˇ

ˇ

À |λ|´1{4||f ||p||g||q||h||r (2.4)

if |BxBypBx ´ ByqSpx, yq| ě 1 and whenever p, q, r P r2, 4q and p´1 ` q´1 ` r´1 “ 5{4.

In the proof of Theorem 2.1 we used the trilinear oscillatory integral decay estimate of
Gressman and Xiao mentioned above and proceed by induction. In the induction step, a
TT ˚ argument is used to reduce the degree of linearity by 1.

In an ongoing work with Kevin O’Neill and Zhen Zeng, we are making progress in
studying trilinear oscillatory integrals similar to (2.1) but in higher dimensions. Namely,
our goal is to generalize an oscillatory integral result found in [11].

3 Applications to Multilinear Fourier Integral Operators with
Rational Symbol

My interest in the content of sections 1 and 2 originated from a more general part of my
thesis work, which was to make sense of and find estimates for Fourier integral operators
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with rational symbol of the form

TP pf1, f2 . . . , fmqpxq

:“

ż

Rnm

1

P pξ1, ξ2, . . . , ξmq
pf1pξ1q pf2pξ2q . . . pfmpξmqe

2πipx¨pξ1`ξ2`¨¨¨`ξmqqdξ1 . . . dξm,

(3.1)

where pfi P SpRnq, x P Rn, ξi – pξi,1, ξi,2, . . . , ξi,nq P Rn, and P is a polynomial in nm
variables. Note that if P ” 1 then T pf1, . . . , fmqpxq “ f1 ¨ f2 ¨ ¨ ¨ fmpxq. If P is degree one,
then TP can be written in terms of translations, and estimates can be obtained using Hölder
inequalities. In the cases we study, P is more involved and requires us to carefully define
TP in the principal value sense.

After very careful manipulations, for certain P, we manage to write TP in terms of
products of solutions to various dispersive PDEs, like the Schrödinger or KdV equations.
The easiest such example is:

TP1pf1, f2qpx1, x2q “

ż

R4

1

ξ1,1 ` ξ22,2

pf1pξ1q pf2pξ2qe
2πipx1,x2q¨pξ1`ξ2qdξ1dξ2

“

ż

R
signptqf1px1 ` t, x2qS

t
2rf2spx1, x2q dt (3.2)

where St2rf2spx1, x2q represents the solution to the Schrödinger equation with initial con-
dition f2 in just the second coordinate. In this case, one can proceed to apply Strichartz
estimates to obtain:

||TP1pf1, f2q||Lr1x1L
r2
x2
À ||f1||Lp1x1L

p2
x2
||f2||Lr1x1L2

x2
(3.3)

with p12 `
1
p2
´ 1

r2
q ` 2

p1
“ 2, 1 ď p1 ď

4
3 , 0 ď

1
r2
´ 1

p2
ď 1

2 . In other cases we formulate TP
in terms of more general oscillatory integral operators and apply Hörmander’s oscillatory
integral theorem. Omitting the intermediate steps, the easiest non-trivial example is

|TP2pf1, f2, f3qpx1, x2, x3q| “

ˇ

ˇ

ˇ

ˇ

ˇ

ż

R9

pf1pξ1q pf2pξ2q pf3pξ3q

ξ1,1ξ2,2 ` ξ3,3
e2πipx1,x2,x3q¨pξ1`ξ2`ξ3qdξ1dξ2dξ3

ˇ

ˇ

ˇ

ˇ

ˇ

(3.4)

À

ż

R

|hpx1, x2, x3 ` tq|

|t|1{2
||fp¨, x2, x3q||L2

x1
||gpx1, ¨, x3q||L2

x2
dt.

Applying the classic Hardy-Littlewood-Sobolev fractional integration theorem coupled with
Hölder, we obtain the following mixed norm estimates:
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||TP2pf1, f2, f3q||Lr1x1L
r2
x2
L
r3
x3
À ||f1||Lp2x2L

p3
x3
L2
x1
||f2||Lq1x1L

q3
x3
L2
x2
|f3||Lu1x1L

u2
x2
L
u3
x3

(3.5)

with 1
pi
` 1

ui
“ 1

ri
, i “ 1, 2 and 1

p3
` 1

q3
` 1

u3
“ 1

r3
` 1

2 , u3 ą 2.
The examples above laid the groundwork for us to explore operators of type TP with

more complicated choices for P. Having at hand a wide variety of oscillatory integral decay
estimates together with appropriate multilinear fractional integration theorems appears to
be a necessity for us as we begin to develop a systematic understanding of the operators
TP . To conclude, below are two theorems that resulted from our studies.

Theorem 3.1. For x “ px1, x2, x3q P R3 and fi P SpR3q, consider

TP3pf1, f2, f3, f4qpxq :“

ż

R12

pf1pξ1q pf2pξ2q pf3pξ3q pf4pξ4q

ξ1,1ξ2,2 ` pξ3,3 ´ ξ4,3q
e2πix¨pξ1`ξ2`ξ3`ξ4qdξ1dξ2dξ3dξ4.

Then, |TP3pf1, f2, f3, f4q| can be bounded in terms of the fractional BHT and

||TP3pf1, f2, f3, f4q||Lr1x1L
r2
x2
L
r3
x3
À ||f1||Lp2x2L

p3
x3
L2
x1
||f2||Lq1x1L

q3
x3
L2
x2
||f3||Lu1x1L

u2
x2
L
u3
x3
||f4||Lv1x1L

v2
x2
L
v3
x3

with 1
pi
` 1

qi
` 1

ui
` 1

vi
“ 1

ri
` 1

2 for i “ 1, 2, 3 and p1 “ q2 “ 2.

Theorem 3.2. For x P R3 and fi P SpR3q, consider

TP4pf1, . . . , f7qpxq :“

ż

R21

pf1pξ1q pf2pξ2q pf3pξ3q . . . pf7pξyq

pξ1,1ξ2,2 ` ξ5,3 ´ ξ6,3qpξ3,3ξ4,3 ` ξ5,3 ´ ξ7,3q
e2πix¨pξ1`¨¨¨`ξ7qdξ1 . . . dξ7.

(3.6)
Then, |TP3pf1, . . . , f7q| can be bounded in terms of the fractional Biest and

||TP3pf1, . . . , f7q||Lr1x1L
r2
x2
L
r3
x3
À||f1||Lp2x2L

p3
x3
L2
x1
||f2||Lq1x1L

q3
x3
L2
x2
||f3||Lu1x1L

u2
x2
L2
x3
||f4||Lv1x1L

v2
x2
L2
x3

(3.7)

||f5||LĂp1
x1
L

Ăp2
x2
L2
x3

||f6||LĂq2
x2
L

Ăq3
x3
L2
x1

||f7||LĂu2
x2
L

Ău3
x3
L2
x1

(3.8)

with 1
pi
` 1
qi
` 1
ui
` 1
vi
` 1

rpi
` 1

rqi
` 1

Ăui
“ 1

ri
` 1

2 , i “ 1, 2 with p1 “ q2 “ 2, and 1
p3
` 1
q3
` 1

Ăp3
` 1

rq3
` 1

Ău3
“

1
r3
` 1
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